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Abstract
We present a kinetic model of the stationary solar wind based on the equation for
two-particle (electron–proton) velocity distribution. The influence of collisions
and the magnetic field is neglected. The approximation of the quasi-neutral
plasma is applied to close the model, which results in excluding a Coulomb
potential of plasma polarization field from consideration. The kinetic equation
is solved using the method of characteristics. Solar wind density and speed are
evaluated by integrating the two-particle distribution function over its domain
of definition formed by related characteristics. The obtained dependences of
the density and velocity on heliocentric distance agree with observational data
of the in-ecliptic slow solar wind.

PACS numbers: 52.25.Dg, 96.50.Ci

1. Introduction

Forty years ago, the model of Parker [1] introduced the contemporary theory of solar wind
as a plasma flow ejected by the Sun. Most solar wind models are based on the continuum
mechanics approach [2–5]. Some use the kinetic concept to derive equations for mean
parameters of particle flow. The development of the kinetic approach to solar wind modelling
has been presented in some recent publications [9–15]. Most of these investigations were
triggered largely by the problem of exploring energy sources necessary for providing solar
wind acceleration. Significant successes have been achieved in the past few years in the
observational and theoretical study of the coronal heating and acceleration mechanisms, see,
for example, [5–8]. The discussion of the thermal motion of plasma particles as an energy
source of the solar wind has been renewed in recent publications presenting collisionless kinetic
models [9–11]. These are based on one-particle distribution functions and assumptions allowed
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the calculation of the appropriate polarization potential [17]. In this paper, we develop the
collisionless two-particle kinetic model [15] which results in more consistent consideration
of Coulomb interaction between plasma particles and yields the closed ‘neutral’ problem
independent of the plasma polarization potential. The kinetic equation is solved analytically
by the method of characteristics. The deduced analytical dependences for mean parameters
(density and speed) agree with the observational data of the in-ecliptic slow solar wind.

2. Two-particle kinetic model

The solar wind is considered as a stationary flow with spherical symmetry that is formed by
the fully ionized hydrogen plasma ejected by the Sun. The influence of the magnetic field and
the Sun’s rotation is not taken into account. The collisions of particles are neglected in plasma
where the long-range Coulomb interaction is dominant.

The related kinetic equations for the distribution functions of electron (fe) and proton
(fp) velocities yield the following equation for the two-particle distribution function f

∂f

∂r
+ Fre · ∂f

∂εe
+ Frp · ∂f

∂εp
− u⊥e

r
· ∂f

∂u⊥e
− u⊥p

r
· ∂f

∂u⊥p
= 0 (1)

if statistical independence of fe and fp is assumed: f = fefp. Here εe = me
(
u2
re + u2

⊥e
)/

2,
εp = mp

(
u2
rp + u2

⊥p
)/

2; ur, u⊥ are the radial and tangential components of particle velocity,
r is heliocentric distance, and m is particle mass. The indices e and p refer to electrons
and protons, respectively. The forces applied to a particle in gravitational and electrostatic
fields are expressed through their potentials ϕ and ψ,Fre = −medϕ/dr − e dψ/dr, Frp =
−mpdϕ/dr + e dψ/dr , where e is the charge of an electron (proton), ϕ = −γM/r, γ is the
gravitational constant, and M is the mass of the Sun. The Coulomb potentialψ(r) is produced
by plasma polarization. We assume that it is a statistically averaged function not depending
on the individual interactions of particles (collisions).

Let us consider the plasma flow whose typical scale length L is of the order of current
heliocentric distance r. In this case an approximation of quasi-neutral plasma can be applied
because r � ae, where ae is plasma polarization length (Debye length) which is estimated to
be about dozens of centimetres in the solar corona and about dozens of metres at a distance
corresponding to the Earth’s orbit. This means the electron and proton densities (Ne, Np) and
their flux densities (Nue, Nup) are assumed to be equal at any heliocentric distances:

Ne(r) = Np(r) Nue(r) = Nup(r). (2)

Therefore the following integrals of the two-particle distribution function f can be interpreted
as squares of plasma density N and its flux density Nu, respectively

N2(r) =
∫
D

f (r, �U) d �U (Nu(r))2 =
∫
D

ureurpf (r, �U) d �U (3)

where �U is a set of variables ure, u⊥e, urp, d �U = 2πu⊥e du⊥e dure2πu⊥p du⊥p durp.
A quasi-neutral model does not depend on the parameters of the polarization field if

initial and boundary conditions are also neutral. The assumption that at the exobase r = r0
the plasma state is in equilibrium yields an initial two-particle distribution f0 as a product of
Maxwell electron and proton distributions

f0 = f (r0, urp0, u⊥p0) = N2
0
(memp)

3/2

(2πkT0)3
exp

(
− ε0

kT0

)
(4)

which satisfies the above requirement. Here ε0 = εe0 + εp0, k is the Boltzmann constant,
T0 is the electron and proton temperature at the exobase. The zero index marks values of
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variables at r = r0. A solution of the kinetic equation has a domain of definition with related
boundaries formed by the characteristics of this equation in the phase space of velocities. If
we assume that f (including its boundary values) depends on the sum of electron and proton
kinetic energies f = f (r, εr, ε⊥) then equation (1) can be reduced to the following form

∂f

∂r
+ (Fre + Frp) · ∂f

∂ε
− 2ε⊥

r
· ∂f
∂ε⊥

= 0 (5)

where

εr = (
meu

2
re +mpu

2
rp

)/
2 ε⊥ = (

meu
2
⊥e +mpu

2
⊥p

)/
2

ε = εe + εp = εr + ε⊥ Fre + Frp = −(me +mp) dϕ/dr.

Thus we obtain the closed model (2), (4) and (5) which describes a stationary spherical
symmetric flow of quasi-neutral plasma ejected by the Sun and driven by thermal motion of
high-speed electrons [17]. By taking equation (2) into account, transformation (1)–(5) can be
interpreted as a transition from the description of electron and proton statistics separately to a
description of the statistics of dynamic electron–proton pairs with energy ε.

3. Solution

The first-order partial differential equation (5) resulted in f = const along the characteristics:

dε

dr
= Fre + Frp

dε⊥
dr

= −2ε⊥
r
. (6)

The general solution to equation (5) is the arbitrary differentiable function of the first integrals
E, M of the characteristic equations (6) that express the laws of energy and moments of
momentum conservation

f = f (E,Me,Mp) E = ε +mϕ = ε0 +mϕ0 M = r2ε⊥ = r2ε⊥0 (7)

where m = me + mp. The particular integral of problem (5) and (4) is the result of substitution
ε0 from equation of energy conservation (7) in the initial distribution (4):

f = N2
0 · (memp)

3/2

(2πkT0)3
exp

(
−ε −m(ϕ0 − ϕ)

kT0

)
. (8)

The solution (8) is defined in the domain formed by characteristics (6) that refer to particles
ejected by the Sun, i.e. to those coming from the initial domain of definition:

0 � u⊥e0 < ∞ 0 � ure0 < ∞ 0 � u⊥p0 < ∞ 0 � urp0 < ∞. (9)

Figure 1(a) shows these characteristics in the space of ur, u⊥, r̄ , where the axis r̄ = r/r0 starts
from the initial value r̄ = 1. Then equation (9) gives the initial domain D0:

ur0 � 0 u⊥0 � 0. (10)

Here u2
r = 2εr/m, u2

⊥ = 2ε⊥/m. The arrows mark the direction of propagation of initial
conditions along characteristics. The curves which return to the plane r̄ = 1 refer to particles
of the Sun atmosphere; they do not have enough kinetic energy to overcome the gravitational
well and fall to the Sun. Other high-energy particles escape the potential well and move to
infinity. Thus, the domain of definition D for the solution f (r̄) (8) at r̄ > 1 results from
relations (7) and (9) and is described by the following inequalities

0 � u⊥ � u
�

⊥ −ŭr � ur � ∞ (11)

where

u
�

⊥ =
√

2

m

εr +m(ϕ − ϕ0)

r̄2 − 1
ŭr =

√
2

m
(−mϕ − ε⊥) r̄ = r

r0
.
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(a) (b)

(c)

Figure 1. (a) Characteristics (9) coming from the initial domain (13) at r̄ = 1. (b) Domain of
definition of solution (11), (14) at r̄ > 1. (c) Evolution of the two-particle distribution f along the
heliocentric distance axis (scales are relative).

Figure 1(b) shows D at r̄ > 1 as a section of the characteristic set (it is bordered by the full
curve and shaded grey).

Thus the solution of problem (5), (4) and (10) is described by function (8) and defined in
domain (11).

Let us compare the considered model with the model based on equation (1) [15], whose
solution is distribution (8) defined in the domain Dψ dependent on the polarization potential
ψ . It can be shown that Dψ ⊂ D for any admissible realization of ψ(r). Therefore N(r)
obtained from equations (3), (8) and (10) majorizes any specific density Nψ(r) of the model
[15]. It can be shown that the same relation binds the fluxes Nuψ and their majorant Nu
evaluated by equation (3) over the domainsDψ and D, respectively

Nuψ(r) < Nu(r). (12)

The evolution of both solutionsN(r) (8) and (11) and Nψ(r) can be illustrated by figure 1(c)
[15]. It is seen that non-equilibrium character of the velocity distribution function intensifies
as the heliocentric distance increases. This is caused by the atmosphere particles falling out
as well as by energy exchange from tangential to radial motion of particles.
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4. Solar wind density and speed

The obtained solution (11) and (13) of the considered model and formulae (6) yield the
following evaluations of plasma flow density N and speed u

N(r̄) = N0 exp

(
ϕ̄0

2

) √
η(r̄) u(r̄) = ū0ep

√
2 + (2 − ϕ̄0)2

2η(r̄)

1

r̄2

(13)

η(r̄) = 2 exp(−ϕ̄)
(

1 − exp

(
ϕ̄0 − ϕ̄

r̄2 − 1

) (
1 − ϕ̄0 − ϕ̄

r̄2
− 1

r̄4

))
− 1 + (1 − ϕ̄0)

2

2r̄4

where ϕ̄ = ϕ/kT0, ū0ep = √
2kT0/π

√
memp. Here u is evaluated as u = Nu∞(r̄)/N(r̄)

whereNu∞ = N0ū0ep exp(ϕ̄0/2)
√

1 + 2(1 − (ϕ̄0/2))r̄−2 is the dominant term of descending
power series of Nu(r) (6) for r̄ � 1. Nu∞ conserves the majorant character of Nu with
respect to flux densitiesNuψ of the model [15]. By taking into account that for the considered
stationary problem 4πr̄2Nuψ(r) = const, equation (12) yields Nuψ(r̄) < Nu∞(r̄) ∀r̄ > 1.
At the same time, for the considered problem, Nu∞ represents the flux of particles because
their reverse motion from infinity is missing.

The analysis of density Nψ(r) and speed uψ(r) as dependences on the polarization
potential ψ obtained in [7] shows that they satisfy the following inequalities

Nψ(r̄) � N∗(r̄) < N(r̄) u∗(r̄) � uψ(r̄) < u(r̄) (14)

in the domain of real values of Nψ and uψ : mϕ(2r̄ − 1)/2er̄ � ψ � mϕ/2er̄. Here
N∗ = Nψ and u∗ = uψ for eψ ∼= mϕ/2 which corresponds to an approximation of quasi-
neutral thermodynamic equilibrium plasma in gravitational field [16]. The above limits of
admissible realizations of potential ψ restrict the existence domain of stationary solutions.

The theoretical results of the considered stationary model (13) are compared below to the
empirical radial dependences deduced in [18] by averaging parameters of the in-ecliptic slow
solar wind [18, 19]. This type of wind is non-steady but its mean parameters are rather stable.
To compare the statistical averages (17) to these empirical data we need to assume the ergodic
property of the flow.

The present model is proved in the ecliptic for heliocentric distances greater than about
6R where the influence of collisions can be neglected [17] (R is the Sun’s radius). At
the same time, the Maxwell (equilibrium) approximation of the velocity distribution at the
exobase is appropriate in the collision-dominated region, i.e. at r0 < 6R. Therefore we
choose the exobase distance r0 = 5R and take the respective initial values of temperature
and density from [18]: T0 ≈ 8.9 × 105 K, N(1) ≈ 4.5 × 1010 m−3. In this case the
difference between theoretical results (13) and empirical data [18] at r > r0 is less than
about 30% for density N and less than 16% for the flow speed u. The respective dependence
(13) and empirical speed u[18] [18] satisfy the inequalities (14): u∗(r) < u[18](r) < u(r)

over the interval 30R < r < 370R. At the altitude of the Earth’s orbit (1 au),
u[18] ≈ 423 km s−1, u ≈ 483 km s−1, N[18] = 6.23 × 106 m−3, N = 6.25 × 106 m−3.

If we shift the exobase to lower altitudes the Maxwellian approximation of initial
distribution improves while the role of collisions increases. For r0 = 1.5R the difference
between theoretical (13) and empirical [18, 19] density values does not exceed about 40%
if T0 = 1.09 × 106 K and N(1) ≈ 1.8 × 1013 m−3. The respective profile u(r̄) (13) leaves
in the area of the observed speed’s dispersion [20] but it increases more gradually at small
heliocentric distances than the empirical approximation [18] and reaches the greater terminal
value (at 1 au u ≈ 487 km s−1).
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5. Conclusions

The suggested kinetic model is based on the two-particle distribution function and quasi-neutral
plasma approximation. It allows us to evaluate the non-equilibrium distribution function and
related mean flow parameters that agree in the ecliptic with the observational data for a large
range of heliocentric distances. This model is independent of the parameters of the plasma
polarization field and does not require an additional assumption for the Coulomb potential. As
result, it includes no matching parameters and the observational data are used only for setting
initial values of density and temperature.

Agreement of the theoretical results presented in this paper with the available observational
data shows that the collisionless approximation is appropriate for describing mean parameters
(density and speed) of the slow solar wind beyond about five Sun radii.
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